您好!欢迎访问北京津发科技股份有限公司网站!

当前位置:首页  >  技术文章  >  面部表情分析的几个常见任务和基本算法

面部表情分析的几个常见任务和基本算法

发布时间:2022-04-21      点击次数:39
   面部表情分析是计算机通过分析人脸信息尝试理解人类情感的一种技术,目前已成为计算机视觉领域的热点话题。其挑战在于数据标注困难、多人标签一致性差、自然环境下人脸姿态大以及遮挡等。为了推动面部表情分析发展,本文概述了面部表情分析的相关任务、进展、挑战和未来趋势。首先,简述了面部表情分析的几个常见任务、基本算法框架和数据库;其次,对人脸表情识别方法进行了综述,包括传统的特征设计方法以及深度学习方法;接着,对人脸表情识别存在的问题与挑战进行总结思考;最后,讨论了未来发展趋势。通过全面综述和讨论,总结以下观点:
  1)针对可靠人脸表情数据库规模小的问题,从人脸识别模型进行迁移学习以及利用无标签数据进行半监督学习是两个重要策略;
  2)受模糊表情、低质量图像以及标注者的主观性影响,非受控自然场景的人脸表情数据的标签库存在一定的不确定性,抑制这些因素可以使得深度网络学习真正的表情特征;
  3)针对人脸遮挡和大姿态问题,利用局部块进行融合的策略是一个有效的策略,另一个值得考虑的策略是先在大规模人脸识别数据库中学习一个对遮挡和姿态鲁棒的模型,再进行人脸表情识别迁移学习;
  4)由于基于深度学习的表情识别方法受很多超参数影响,导致当前人脸表情识别方法的可比性不强,不同的表情识别方法有必要在不同的简单基线方法上进行评测。目前,虽然非受控自然环境下的表情分析得到较快发展,但是上述问题和挑战仍然有待解决。
  人脸表情分析是一个比较实用的任务,未来发展除了要讨论方法的精度也要关注方法的耗时以及存储消耗,也可以考虑用非受控环境下高精度的人脸运动单元检测结果进行表情类别推断。
 
 
 
 

人因工程与工效学

人机工程、人的失误与系统安全、人机工效学、工作场所与工效学负荷等

安全人机工程

从安全的角度和着眼点,运用人机工程学的原理和方法去解决人机结合面安全问题

交通安全与驾驶行为

人-车-路-环境系统的整体研究,有助于改善驾驶系统设计、提高驾驶安全性、改善道路环境等

用户体验与交互设计

ErgoLAB可实现桌面端、移动端以及VR虚拟环境中的眼动、生理、行为等数据的采集,探索产品设计、人机交互对用户体验的影响

建筑与环境行为

研究如何通过城市规划与建筑设计来满足人的行为心理需求,以创造良好环境,提高工作效率

消费行为与神经营销

通过ErgoLAB采集和分析消费者的生理、表情、行为等数据,了解消费者的认知加工与决策行为,找到消费者行为动机,从而产生恰当的营销策略使消费者产生留言意向及留言行为

扫一扫,关注微信

邮箱:sales@kingfar.cn

电话:4008113950

版权所有©2022 北京津发科技股份有限公司 All Rights Reserved     备案号:京ICP备14045309号-9     sitemap.xml     管理登陆     技术支持:仪表网