近年来,
动作捕捉在运动和医疗健康行业的应用不断增长,消费、医疗、工业等不同级别的产品数量都在不断增加,体育专业人士必须紧跟产品的应用实践。
而随着技术从研究机构逐渐延伸至临床和商业培训领域,如何利用这些专业数据助力商业决策和行业扩展也面临进一步挑战。
在本文中,我们将从动作捕捉技术的工作方式出发,通过不同原理动作捕捉技术在运动领域的应用,挖掘出技术各异的动作捕捉系统的优势和局限性,zui后帮助用户做出好的产品选择。
什么是3D动作捕捉,它如何工作?
动作捕捉是一个非常宽松的术语,通常指在三个维度上对人体运动数据进行记录。根据原理的不同,分为机械式运动作捕捉、声学式动作捕捉、电磁式动作捕捉、光学式动作捕捉和惯性式动作捕捉。当前市面上主流的三维动作捕捉设备主要是后两种技术。
动作捕捉的工作一部分是标记和跟踪身体运动,另一部分是将该信息转化为对影视、体育和医疗行业中的研究和应用都有价值的数据。
光学式动作捕捉
常见的光学式运动捕捉大多基于计算机视觉原理,它又可以分为基于Marker点和非Marker点的动作捕捉。
基于Marker点的动作捕捉需要在目标物体的关键位置贴上反光点,俗称Marker点,利用高速红外摄像机捕捉目标物体上反光点的运动轨迹,从而反映目标物体在空间中的运动情况。从理论上说,对于空间中的一个点,只要它能同时为两部相机所见,则根据同一时刻两部相机所拍摄的图像和相机参数,可以确定这一时刻该点在空间中的位置。
对于人体进行运动捕捉时,经常需要在人体的各个关节和骨性标志处贴上反光球,通过红外高速摄像机拍摄反光点的运动轨迹,随后进行分析和处理,还原人体在空间的运动。
近些年来,随着计算机科学的发展,另一种非Marker点的技术正在迅速发展,该方法主要利用图像识别和分析技术,直接对计算机拍摄的图像进行分析。但该技术最容易受环境干扰,光线、背景、遮挡等变量都可能对捕捉效果产生较大的影响。
惯性式动作捕捉
另外一种较为常见的动作捕捉是基于惯性传感器(Inertial Measurement Unit, IMU)的动作捕捉,实际上就是将芯片集成封装成小的模块绑定在身体的各个环节,通过芯片记录的人体环节的空间运动,后期通过计算机进行算法分析从而转化为人体的运动数据。
由于惯性捕捉主要是在环节点固定惯性传感器,通过传感器的运动计算位置变化,因此,惯性捕捉不容易受到外界环境的影响。